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Outline

Theme of the Talk

� Dijkstra’s Layered Architecture and Cross Layer Design.

� TBMA: Data Centric Medium Access for Parameter Estimation.

� Data Centric Routing for Signal Detection.

Signal Processing Ideas

� Coherent Combining

� Diversity

� Innovation
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Dijkastra’s Layered Architecture

Operator

User Program

I/O Management

I/O Devices

Memory

Access Schedule

Hardware

Application

Transport

Network

Datalink

MAC

PHY

EWD 196: The structure of ‘THE’-multiprogramming system, Comm. ACM 11, 1968, 5:341-346
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Why Layered Architecture is Crucial

WAN

LAN

LAN
Physical

Data Link

MAC

Network

Transport

Application

Objectives

◆ Millions of users

◆ Thousands of applications

◆ A growing variety of devices.

The need of layered approaches:

◆ Partition network functions into layers

◆ Design each layer separately
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Sensor Networks are Application Specific

Environment MilitaryWeather

Seismic

◆ Network with purposes.

◆ “Unconventional” design metrics

◆ Harsh design constraints

What is the appropriate layering architecture for sensor network?
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Dijkstra on Layers with Yardsticks

“I can only view a well-structured system

as a hierarchy of layers and in the design

process, the interface between these layers

has to be designed and decided upon each

time. I am not so much bothered by de-

signer’s willingness and ability to propose

such interfaces, I am seriously bothered by

the lack of commonly accepted yardsticks

along which to compare the evaluate such

proposals.”
E. W. Dijkstra, “Hierachical Ordering of Sequential Pro-

cesses,” EWD 310.

What should be the yardstick?



c©Lang Tong. 3/21/05 @ 2005 ICASSP 8

Is There A Parallel in Computing?

DSP or ASIC

Sensor NetworkGeneral Purpose Network

General Purpose Processor
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TBMA: A Data Centric Medium Access

Joint work with Gohkan Mergen

References

[1 ] G. Mergen and L. Tong, “Type-based Estimation over Multiaccess Channels,”

to appear in IEEE Transactions on Signal Processing, 2005. See also Allerton

2004.
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Distributed Parameter Estimation

Mobile Access

Cluster head

Estimator at Fusion Center

Physical Phenomenon

Z1 Z2 Zn−1 Zn

X1

X2 Xn−1 Xn

θ ∈ Θ

θ̂
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Distributed Parameter Estimation

Estimator at Fusion Center

Physical Phenomenon

Z1 Z2 Zn−1 Zn

X1
X2 Xn−1 Xn

θ ∈ Θ

θ̂

1 2 3
x

Xi ∼ p(x; θ) p(3; θ)

θ
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Distributed Parameter Estimation

Estimator at Fusion Center

Physical Phenomenon

Z1 Z2 Zn−1 Zn

X1
X2 Xn−1 Xn

θ ∈ Θ

θ̂

If we have perfect access to {Xi},

E{(θ̂n − θ)2} ≥ 1

nI(θ)
,

where the Fisher information I(θ)

measures the efficiency.

I(θ) = −E

(
∂2

∂2θ
ln p(x; θ)

)
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What If No Perfect Access to Sensors?

Center 

Physical Phenomenon

Multiaccess Channel 

Estimator at Fusion 

Z1 Z2 Zn−1 Zn

X1
X2 Xn−1 Xn

θ ∈ Θ

Z

W

θ̂n

1 2 3
x

Xi ∼ p(x; θ) p(3; θ)

θ

IZ(θ) = −E

(
∂2

∂2θ
ln p(z; θ)

)

< IX(θ)

Estimating θ from Z,

E((θ̂n − θ)2) ≥ 1

nIZ(θ)
≥ 1

nIX(θ)

We expect MAC and noise increase MSE.
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Estimation over Multiaccess Channels

The Multiaccess Channel

Multiaccess

Estimator @
Fusion Center

Channel

X1 X2 Xn

s1(t; X1) sn(t; Xn)

H1(t) Hn(t)

Z(t)

θ̂

Z(t) =
∑

i

Hi(t) ∗ si(t; Xi) + N(t)

Sensor Signaling Design

Encode Xi = x to waveform si(t; x)

subject energy constraint.

S
en

so
r 

1
S

en
so

r 
2

X = 1

X = 1 X = 2

X = 2
s1(t; 1) s1(t; 2)

s2(t; 1) s2(t; 2)

t t

tt

Estimation over multiaccess channel is a joint design of signaling, multiaccess,

and signal processing.
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Estimation over MAC: The Layered Approach

The Multiaccess Channel

Multiaccess

Estimator @
Fusion Center

Channel

X1 X2 Xn

s1(t; X1) sn(t; Xn)

Z(t)

θ̂

Z(t) =
∑

i

si(t; Xi) + N(t)

A Layered Approach

2 Encode each Xi into bits.

2 Efficient modulation + Error control

2 Medium Access Control (MAC)

2 TDMA, FDMA, CDMA.

2 Demodulation and Estimation

Z(t) → {X̂i} → θ̂

Advantages:

2 Modular, well understood, simple.

Caveat:

2 Scalability: BW ∝ # users.

2 More importantly, ....

The layered approach ignores data dependencies.
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From User Centric to Data Centric

User centric MAC

Internet

Design paradigm

2 Allocate resources to users:

2 time, frequency, etc....

2 Maximize the rate region.

Data Centric MAC

Fusion Center

Fusion Center

Design paradigm

2 Allocate resources to data:

2 time, frequency, etc....

2 Optimize inference performance.
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Urns and Balls

Pr(Red) = θ1

Pr(Blue) = θ2

Pr(Green) = 1 − θ1 − θ2

Realization x
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Empirical Measure and Type

Pr(Red) = θ1

Pr(Blue) = θ2

Pr(Green) = 1 − θ1 − θ2

Realization x

Type (Empirical Measure)

Px = ( 4
10,

3
10,

3
10)

Type Px gives sufficient statistics. Thus it suffices to transmit Px.
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TBMA: Type Based Multiple Access

X1 = 1 X2 = 2 X3 = 1 X4 = 1 X5 = 3

cr(t) cr(t)cr(t)cb(t) cg(t)

nr nb ng

TBMA delivers the (noisy) empirical distribution
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Advantages and Caveats of TBMA

Estimator @ Fusion Center

X1 = 1 X2 = 2 X3 = 1 X4 = 1 X5 = 3

cr(t) cr(t)cr(t)cb(t) cg(t)

n̂r n̂b n̂g

z(t)

θ̂

References

Liu-Sayeed: Allerton’04

Mergen-Tong: Allerton’04, TSP’04

Mergen-Tong: ICASSP’05

TDMA vs. TBMA

2 Scalability:

BW ∝ n vs. BW ∝ K

2 Asymptotic Optimality:

θ̂n ∼ N (0,
1

nIZ(θ)
) vs. θ̂n ∼ N (0,

1

nIX(θ)
)

Performs as if {Xi} are accessible di-

rectly.

Caveats

2 Data types must add coherently.

2 Must gain synchronization.

2 Need to deal with fading.
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The Power of Coherent Combining

TDMA

TBMA

z1(t) z2(t) z3(t) z4(t) z4(t)

zr(t) zb(t)
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Steps to Optimality

2 TBMA delivers noisy types:

Z = Px + W ∼ N (p(·; θ),
1

n
Σ(θ))

2 The Likelihood Function

f(z| θ) = exp




−n

2

K∑

i=1

(p(i; θ) − zi)
2

p(i; θ)
+ log

√
√
√
√

K∏

i=1

p(i; θ)




 g(z)

2 An Asymptotic ML Estimator

θ̂n = arg min
θ

k∑

i=1

(p(i; θ) − zi)
2

p(i; θ)

2 Convergence

θ̂n
p→ θ,

√
n(θ̂n − θ) → N (0,

1

IX(θ)
)
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Observations

• Less likely samples weight more!

θ̂n = arg min
θ

k∑

i=1

(p(i; θ) − zi)
2

p(i; θ)

• Works as if having direct access to Xi’s
√

n(θ̂n − θ) → N (0,
1

I(θ)
)

• The theorem holds for any noise power.

The σ2 determines the speed of convergence to the asymptotic MSE.
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TBMA over Fading Channels

Multiaccess Fading Channel

Hi

Z(t) =
∑

i

His(t; Xi) + N(t)

Fading Characteristics

2 Random vs. Deterministic

2 Ergodic vs. Nonergodic

2 Knowledge of channel state.

TBMA with TX CSI

|H|

Po

Ptx

Channel inversion law.

Optimality can be retained.

TBMA without CSI

3
√

E

2
√

E

√
E

n̂

Empirical Measure

There is a price to pay.....
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TBMA over Fading Channels

z

Estimator @ Fusion Center

s1(t; x1) sn(t; xn)

nr nb ng

H1 Hn

θ̂

We consider flat fading channel

Z(t) =
∑

i

His(t; Xi) + N(t)

where Hi are i.i.d., known neither at

the transmitter nor the receiver.

Loss due to Fading

If E(Hi) 6= 0, then

θ̂n → θ in p
√

n(θ̂n − θ) → N (θ, (1 +
var(Hi)

E2(Hi)
)I(θ))

The MSE increases by a factor

G = 1 +
var(Hi)

E2(Hi)

The Good and Bad

2 Noncoherent estimation provides

MSE(θ̂) ∼ O(
1

n
)

2 When E(Hi) = 0, TBMA does not

2 give consistent estimate.
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My Curve (TBMA) vs. Your Curve (TDMA)

Mine is Better
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The gain is substantial at low SNR

Mine may be worse...
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Directaccess + ML

As E(H) → 0, TBMA deteriorates...
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Route Selection for Detection in Sensor Networks

Joint work with
Youngchul Sung, A. Ephremides, and H. Vince Poor

References

[1 ] Y. Sung, L. Tong, and A. Ephremides, “Routing for detection of correlated random fields

in large sensor networks,” CISS’05, to be submitted to IEEE Transactions on Information

Theory.

[2 ] Y. Sung, L. Tong, and H. V. Poor, “Neyman-Pearson detection of Gauss-Markov signals

in noise: Closed-form error exponent and properties,” submitted to IEEE Transactions on

Information Theory, Nov., 2004
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Sensor Route Selection

H1

H0
H0 or H1

Sensor field

Spatial correlation
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Sensor Relay and Data Aggregation

H1

H0
H0 or H1

Sensor field

Spatial correlation
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Where Should We Collect Data?

0

SNR = 20 dB 

0

SNR = 20 dB 

I.i.d. signal Perfectly correlated signal
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Energy-Performance Trade-off

0

SNR = 20 dB 

0

SNR = 0 dB 

High SNR Low SNR

It is a tradeoff between diversity and coherency
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Hypotheses on a Given Route

s(x)

x0 x1 x2 xi
xn−2 xn−1

∆1 ∆2 ∆n−1

si yi

wi

xi: location of Sensor i

Sensor Ni

si

∆
= s(xi)

wi: measurement noise

0

0

H0 : yi = wi vs. H1 :

{

si+1 = aisi + ui,

yi = si + wi,

where ai = e−A∆i characterizes the signal

correlation under H1.
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Performance and Route Selection

The Bayesian Detector

log
p1,n

p0,n
(y0, · · · , yn−1)

>H1

<H0

τn,

Pe = π0PF + π1PM

(1)

2 4 6 8 10 12 14 16
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR[dB]

S
im

ul
at

ed
 P

e

Shortest path
Longest path
Optimal path • Number of sensors along the route

• Geometry of the route

• Field correlation

• Signal-to-noise ratio (SNR)

How do we incorporate detection performance into route metric?
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Chernoff Bound and Information

P0

P1

P ∗H0

H1

The Chernoff bound is given by

Pe = π0P (E|H0) + π1P (E|H1)

≤ E(−C(P0, P1))

where C(P0, P1) is the Chernoff information

C(P0, P1)
∆
= sup

0≤s≤1
− log E0

{

E{s log
p1(y0, · · · , yn−1)

p0(y0, · · · , yn−1)
}
}

= D(P ∗||P0)

Remark:

The direct calculation of C(P0, P1) is based

on the eigenvalues of covariance matrix R =

E{yny
T
n}, which does not give an additive link

metric.
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The Innovation Process

y1 = e1 y1 = e1 y1 = e1

y2

y2

y3

ŷ2|1ŷ2|1 ŷ3|{2,1}e2e2

e3

C(y1, y2)

The prediction error

ei
∆
= yi − ŷi|{1,··· ,i−1}, ei ∼ N (0, Re,i)

forms the innovation sequence, and Re,i the error variance.

{y1, y2, · · · , yn} ⇔ {e1, e2, · · · , en}, ei ⊥ ej, for all i 6= j
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Chernoff Information via Innovations Approach

Original Domain Innovations Domain

H0

H1
y0, y1, · · ·

y0, y1, · · ·

e0, e1, · · ·

ẽ0, ẽ1, · · ·

Whitening
Filter

Independent

Independent

log p1(y0, · · · , yn−1) = −1

2

n−1∑

i=0

(

log(2πRe,i) −
e2
i

Re,i

)

,

log p0(y0, · · · , yn−1) = −1

2

n−1∑

i=0

(

log(2πσ2) − y2
i

σ2

)

(Schweppe, 1965)
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Chernoff Information via Innovations Approach

C(P0, P1) = sup
0≤s≤1

− log E0







E









s









−1

2

n−1∑

i=0

log(2πRe,i) −
1

2

n−1∑

i=0

e2
i

Re,i
+

1

2
n log(2πσ2) +

1

2

n−1∑

i=0

y2
i

σ2

︸ ︷︷ ︸

→n/2






















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−40
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Sum y
i
2/σ2

Sum e
i
2/R

e,i

Sum log σ2

Sum log R
e,i
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Chernoff Information via Innovations Approach

Chernoff bound at high SNR

Pe ≤ Bc ≈ E

{

−
n−1∑

i=0

[
1

2
log

(

1 +
Pe,i

σ2

)

− 1

2

]}

Pe,i = Variance of signal innovation (si − ŝi|i−1)

The Link Metric and Optimal Routing

Ci
∆
=

1

2
log

(

1 +
Pe,i

σ2

)

s(x)

C1 C2 Cn−1

si yi

wi

Sensor Ni

si

∆
= s(xi)

wi: measurement noise
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Link Metric as a Function of ∆i

∆i

Ci

xi−1 xi

Ci(∆i) =
1

2
log

{
SNR + 1 − (SNR − Ki−1)e

−2A∆i

}

≈ 1

2
log

{
SNR + 1 − (SNR − 1)e−2A∆i

}

Ci(∆i) is strictly increasing and con-

cave.
0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5
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2.5

3

∆
i

0.
5 

lo
g 

(1
+

P
e,

i/σ
2 )

SNR=6dB 

SNR=10dB 

SNR=20dB 

Without energy constraint, maximize hop size.
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Information Efficiency Per Link
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 =1  
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0.5 log(1+ P
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E
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=0.1 

E
p
=0.5 

E
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=1 

η =
C

Ep + ∆ν

Ep = Processing energy

ν = Propagation decay coefficient
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Schweppe’s LR Recursion

N0 N1 Ni−1 Nn−1

y0 y1 yi−1 yn−1

li−1

· · · · · ·

li = log p1(y0, · · · , yi)

li = li−1 + log p1(yi|y0, · · · , yi−1)

ln−1,H0 or H1

li−1
∆
= log p1(y0, · · · , yi−1)

Ni

yi

li

p1(yi|y1, · · · , yi−1) =
1

√
2πRe,i

E(−1

2

(yi − ŷi|i−1)
2

Re,i
)

ŷi|i−1
∆
= E1(yi|yi−1

0 ), linear MMSE estimate of yi

ei = yi − ŷi|i−1, innovation of yi

Re,i = Ee2
i , innovation variance.



c©Lang Tong. 3/21/05 @ 2005 ICASSP 49

Kalman Recursion in Sensor Networks

N0 N1 Ni−1 Nn−1

y0 y1 yi−1 yn−1

li−1

· · · · · ·

li = log p1(y0, · · · , yi)

li = li−1 + log p1(yi|y0, · · · , yi−1)

ln−1,H0 or H1

li−1
∆
= log p1(y0, · · · , yi−1)

Ni

yi

li

xixi−1

Si−1 Si

yi−1 yi

ŝi|i−1

Pi|i−1

li−1

ŝi+1|i
Pi+1|i

li
ei = yi − ŝi|i−1,

Re,i = Pi|i−1 + σ2,

li = li−1 −
1

2

(

log(2πRe,i) +
e2
i

Re,i

)

,

Kp,i = (aiPi|i−1)/Re,i,

ŝi+1|i = aiŝi|i−1 + Kp,iei,

Pi+1|i = a2
iPi|i−1 + Qi − K2

p,iRe,i.
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A Numerical Simulation

Sensor Field

• Random generation of 30 inde-

pendent paths with 20 nodes

and ∆i
i.i.d.∼ E(1)

• Selection of shortest path,

longest path, and optimal path

in the proposed metric
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Conclusion: Remarks

On Cross Layer Design

• Sensor networks are often application specific.

• The design application specific networks calls for cross layer strategies.

• The crucial step is to derive application specific metric.

Cautionary Remarks

• The analytical results depend on the specific signal model.

• Results should be viewed as insights.
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