Signal Processing for Large Scale Sensor Networks

Cross Layer Design for Application Specific Networks

Lang Tong

School of Electrical and Computer Engineering Cornell University Ithaca, NY 14853

Joint work with G. Mergen, Y. Sung, Anthony Ephremides, and H. Vincent Poor Supported in part by the NSF, ONR, ARL-CTA on Communication and Networks

The Google Index

- Sensor Network
- Cellular Network
- Ad hoc Network
- Neural Network
- MIMO
- Array Processing
- Beamforming
- Multiuser Detection
- Blind Equalization

4.36M 14.5M 2.9M 3.82M 6.73M 6.41M 0.12M **M80.0** 0.09M

Outline

Theme of the Talk

- Dijkstra's Layered Architecture and Cross Layer Design.
- **TBMA**: Data Centric Medium Access for Parameter Estimation.
- Data Centric Routing for Signal Detection.

Signal Processing Ideas

- Coherent Combining
- Diversity
- Innovation

Dijkastra's Layered Architecture

Operator		Application
User Program		Transport
I/O Management	FFF	Network
I/O Devices Memory		Datalink
Access Schedule		MAC
Hardware		PHY

EWD 196: The structure of 'THE'-multiprogramming system, Comm. ACM 11, 1968, 5:341-346

Why Layered Architecture is Crucial

Objectives

- Millions of users
- Thousands of applications
- A growing variety of devices.

The need of layered approaches:

- Partition network functions into layers
- Design each layer separately

Sensor Networks are Application Specific

- Network with purposes.
- "Unconventional" design metrics
- Harsh design constraints

What is the appropriate layering architecture for sensor network?

Dijkstra on Layers with Yardsticks

"I can only view a well-structured system as a hierarchy of layers and in the design process, the interface between these layers has to be designed and decided upon each time. I am not so much bothered by designer's willingness and ability to propose such interfaces, I am seriously bothered by the lack of commonly accepted yardsticks along which to compare the evaluate such proposals."

E. W. Dijkstra, "Hierachical Ordering of Sequential Processes," EWD 310.

What should be the yardstick?

Is There A Parallel in Computing?

General Purpose Network

Sensor Network

General Purpose Processor

DSP or ASIC

TBMA: A Data Centric Medium Access

References

 [1] G. Mergen and L. Tong, "Type-based Estimation over Multiaccess Channels," to appear in *IEEE Transactions on Signal Processing*, 2005. See also Allerton 2004.

Distributed Parameter Estimation

Distributed Parameter Estimation

Distributed Parameter Estimation

If we have perfect access to $\{X_i\}$,

$$\mathbb{E}\{(\hat{\theta}_n - \theta)^2\} \ge \frac{1}{nI(\theta)},$$

where the Fisher information $I(\theta)$ measures the efficiency.

$$I(\theta) = -\mathbb{E}\left(\frac{\partial^2}{\partial^2\theta}\ln p(x;\theta)\right)$$

What If No Perfect Access to Sensors?

$$I_Z(\theta) = -\mathbb{E}\left(\frac{\partial^2}{\partial^2 \theta} \ln p(z;\theta)\right) < I_X(\theta)$$

Estimating
$$\theta$$
 from Z,

$$\mathbb{E}((\hat{\theta}_n - \theta)^2) \ge \frac{1}{nI_Z(\theta)} \ge \frac{1}{nI_X(\theta)}$$

We expect MAC and noise increase MSE.

The Multiaccess Channel

Estimation over Multiaccess Channels

Sensor Signaling Design

Encode $X_i = x$ to waveform $s_i(t; x)$ subject energy constraint.

Estimation over multiaccess channel is a joint design of signaling, multiaccess, and signal processing.

Estimation over MAC: The Layered Approach

The Multiaccess Channel

$$Z(t) = \sum_{i} s_i(t; X_i) + N(t)$$

A Layered Approach

- \Box Encode each X_i into bits.
- \Box Efficient modulation + Error control
- Medium Access Control (MAC)
 TDMA, FDMA, CDMA.
- Demodulation and Estimation

$$Z(t) \to {\hat{X}_i} \to \hat{\theta}$$

Advantages:

□ Modular, well understood, simple.

Caveat:

 \square Scalability: BW \propto # users.

□ More importantly,

The layered approach ignores data dependencies.

From User Centric to Data Centric

User centric MAC Internet Fusion Center Fusion Center Fusion Center Fusion Center Fusion Center

Design paradigm

- Allocate resources to users: time, frequency, etc....
- □ Maximize the rate region.

Design paradigm

- □ Allocate resources to data:
 - time, frequency, etc....
- □ Optimize inference performance.

Urns and Balls

Empirical Measure and Type

Type $P_{\rm x}$ gives sufficient statistics. Thus it suffices to transmit $P_{\rm x}.$

TBMA: Type Based Multiple Access

TBMA delivers the (noisy) empirical distribution

Advantages and Caveats of TBMA

References

Liu-Sayeed: Allerton'04

Mergen-Tong: Allerton'04, TSP'04 ICASSP'05 TDMA vs. TBMA

 \Box Scalability:

BW $\propto n$ vs. **BW** $\propto K$

□ Asymptotic Optimality:

$$\hat{\theta}_n \sim \mathcal{N}(0, \frac{1}{nI_Z(\theta)})$$
 vs. $\hat{\theta}_n \sim \mathcal{N}(0, \frac{1}{nI_X(\theta)})$

Performs as if $\{X_i\}$ are accessible directly.

Caveats

- □ Data types must add coherently.
- □ Must gain synchronization.
- \Box Need to deal with fading.

The Power of Coherent Combining

Steps to Optimality

□ TBMA delivers noisy types:

$$\mathbf{Z} = \mathbf{P}_x + \mathbf{W} \sim \mathcal{N}(\mathbf{p}(\cdot; \theta), \frac{1}{n} \boldsymbol{\Sigma}(\theta))$$

□ The Likelihood Function

$$f(\mathbf{z}| \ \theta) = \exp\left(-\frac{n}{2}\sum_{i=1}^{K} \frac{(p(i;\theta) - z_i)^2}{p(i;\theta)} + \log\sqrt{\prod_{i=1}^{K} p(i;\theta)}\right)g(\mathbf{z})$$

□ An Asymptotic ML Estimator

$$\hat{\theta}_n = \arg\min_{\theta} \sum_{i=1}^k \frac{(p(i;\theta) - z_i)^2}{p(i;\theta)}$$

□ Convergence

$$\hat{\theta}_n \xrightarrow{p} \theta, \quad \sqrt{n}(\hat{\theta}_n - \theta) \to \mathcal{N}(0, \frac{1}{I_X(\theta)})$$

Observations

• Less likely samples weight more!

$$\hat{\theta}_n = \arg\min_{\theta} \sum_{i=1}^k \frac{(p(i;\theta) - z_i)^2}{p(i;\theta)}$$

• Works as if having direct access to X_i 's

$$\sqrt{n}(\hat{\theta}_n - \theta) \to \mathcal{N}(0, \frac{1}{I(\theta)})$$

• The theorem holds for any noise power.

The σ^2 determines the speed of convergence to the asymptotic MSE.

TBMA over Fading Channels

$$Z(t) = \sum_{i} H_i s(t; X_i) + N(t)$$

Fading Characteristics

Random vs. Deterministic
 Ergodic vs. Nonergodic
 Knowledge of channel state.

TBMA with **TX** CSI

TBMA without **CSI**

TBMA over Fading Channels

We consider flat fading channel

$$Z(t) = \sum_{i} H_i s(t; X_i) + N(t)$$

where H_i are i.i.d., known neither at the transmitter nor the receiver.

Loss due to Fading

If $\mathbb{E}(H_i) \neq 0$, then

$$\hat{\theta}_n \to \theta \text{ in } \mathbf{p}$$

$$\sqrt{n}(\hat{\theta}_n - \theta) \to \mathcal{N}(\theta, (1 + \frac{\mathsf{var}(H_i)}{\mathbb{E}^2(H_i)})I(\theta))$$

The MSE increases by a factor

$$G = 1 + \frac{\operatorname{var}(H_i)}{\mathbb{E}^2(H_i)}$$

The Good and Bad

 $\hfill\square$ Noncoherent estimation provides

$$\mathsf{MSE}(\hat{\theta}) \sim O(\frac{1}{n})$$

□ When $\mathbb{E}(H_i) = 0$, TBMA does not give consistent estimate.

My Curve (TBMA) vs. Your Curve (TDMA)

Mine is Better

Mine may be worse...

The gain is substantial at low SNR

As $\mathbb{E}(H) \rightarrow 0$, TBMA deteriorates...

Route Selection for Detection in Sensor Networks

Joint work with Youngchul Sung, A. Ephremides, and H. Vince Poor

References

- [1] Y. Sung, L. Tong, and A. Ephremides, "Routing for detection of correlated random fields in large sensor networks," CISS'05, to be submitted to *IEEE Transactions on Information Theory*.
- [2] Y. Sung, L. Tong, and H. V. Poor, "Neyman-Pearson detection of Gauss-Markov signals in noise: Closed-form error exponent and properties," submitted to *IEEE Transactions on Information Theory*, Nov., 2004

Sensor Route Selection

Sensor Relay and Data Aggregation

Where Should We Collect Data?

©Lang Tong. 3/21/05 @ 2005 ICASSP

Energy-Performance Trade-off

It is a tradeoff between **diversity** and **coherency**

Hypotheses on a Given Route

$$\mathcal{H}_0: \quad y_i = w_i \quad \text{VS.} \quad \mathcal{H}_1: \left\{ \begin{array}{ll} s_{i+1} = a_i s_i + u_i, \\ y_i = s_i + w_i, \end{array} \right.$$

where $a_i = e^{-A\Delta_i}$ characterizes the signal correlation under \mathcal{H}_1 .

Performance and Route Selection

The Bayesian Detector

$$\log \frac{p_{1,n}}{p_{0,n}} (y_0, \cdots, y_{n-1}) \overset{>H_1}{<}_{H_0} \tau_n,$$

$$P_e = \pi_0 P_F + \pi_1 P_M$$
(1)

- Number of sensors along the route
- Geometry of the route
- Field correlation
- Signal-to-noise ratio (SNR)

How do we incorporate detection performance into route metric?

Chernoff Bound and Information

The Chernoff bound is given by

$$P_e = \pi_0 P(\mathcal{E}|H_0) + \pi_1 P(\mathcal{E}|H_1)$$

$$\leq \mathbb{E}(-C(P_0, P_1))$$

where $C(P_0, P_1)$ is the Chernoff information

$$C(P_0, P_1) \stackrel{\Delta}{=} \sup_{0 \le s \le 1} -\log \mathbb{E}_0 \left\{ \mathbb{E} \left\{ s \log \frac{p_1(y_0, \cdots, y_{n-1})}{p_0(y_0, \cdots, y_{n-1})} \right\} \right\}$$
$$= D(P^* || P_0)$$

Remark:

The direct calculation of $C(P_0, P_1)$ is based on the eigenvalues of covariance matrix $\mathbf{R} = \mathbb{E}\{\mathbf{y}_n \mathbf{y}_n^T\}$, which does not give an additive link metric.

The Innovation Process

The prediction error

$$e_i \stackrel{\Delta}{=} y_i - \hat{y}_{i|\{1,\cdots,i-1\}}, \quad e_i \sim \mathcal{N}(0, R_{e,i})$$

forms the innovation sequence, and $R_{e,i}$ the error variance.

$$\{y_1, y_2, \cdots, y_n\} \Leftrightarrow \{e_1, e_2, \cdots, e_n\}, e_i \perp e_j, \text{ for all } i \neq j$$

Chernoff Information via Innovations Approach

(Schweppe, 1965)

Chernoff Information via Innovations Approach

$$C(P_{0}, P_{1}) = \sup_{0 \le s \le 1} -\log \mathbb{E}_{0} \left\{ \mathbb{E} \left[s \left(-\frac{1}{2} \sum_{i=0}^{n-1} \log(2\pi R_{e,i}) - \frac{1}{2} \sum_{i=0}^{n-1} \frac{e_{i}^{2}}{R_{e,i}} + \frac{1}{2} n \log(2\pi\sigma^{2}) + \underbrace{\frac{1}{2} \sum_{i=0}^{n-1} \frac{y_{i}^{2}}{\sigma^{2}}}_{\rightarrow n/2} \right) \right] \right\}$$

Chernoff Information via Innovations Approach

Chernoff bound at high SNR

$$P_e \le B_c \approx \mathbb{E}\left\{-\sum_{i=0}^{n-1} \left[\frac{1}{2}\log\left(1+\frac{P_{e,i}}{\sigma^2}\right) - \frac{1}{2}\right]\right\}$$

 $P_{e,i}$ = Variance of signal innovation $(s_i - \hat{s}_{i|i-1})$

The Link Metric and Optimal Routing

Link Metric as a Function of Δ_i

Without energy constraint, maximize hop size.

Information Efficiency Per Link

$$\eta = \frac{C}{E_p + \Delta^{\nu}}$$

 E_p = Processing energy ν = Propagation decay coefficient

Schweppe's LR Recursion

$$p_1(y_i|y_1,\cdots,y_{i-1}) = \frac{1}{\sqrt{2\pi R_{e,i}}} \mathbb{E}\left(-\frac{1}{2} \frac{(y_i - \hat{y}_{i|i-1})^2}{R_{e,i}}\right)$$

 $\hat{y}_{i|i-1} \stackrel{\Delta}{=} \mathbb{E}_1(y_i|y_0^{i-1}),$ linear MMSE estimate of y_i $e_i = y_i - \hat{y}_{i|i-1},$ innovation of y_i $R_{e,i} = \mathbb{E}e_i^2,$ innovation variance.

Kalman Recursion in Sensor Networks

A Numerical Simulation

Sensor Field

- Random generation of 30 independent paths with 20 nodes and $\Delta_i \overset{i.i.d.}{\sim} \mathbb{E}(1)$
- Selection of shortest path, longest path, and optimal path in the proposed metric

Conclusion: Remarks

On Cross Layer Design

- Sensor networks are often application specific.
- The design application specific networks calls for cross layer strategies.
- The crucial step is to derive application specific metric.

Cautionary Remarks

- The analytical results depend on the specific signal model.
- Results should be viewed as insights.

References

- G. Mergen and L. Tong, "Type-based estimation over multiaccess channels," to appear in IEEE Trans. on Signal Processing, 2005.
- [2] Y. Sung, L. Tong, and A. Ephremides, "Routing for detection of correlated random fields in large sensor networks," CISS'05, to be submitted to *IEEE Transactions on Information Theory*.
- [3] Y. Sung, L. Tong, and H. V. Poor, "Neyman-Pearson detection of Gauss-Markov signals in noise: Closed-form error exponent and properties," submitted to *IEEE Transactions on Information Theory*, Nov., 2004